
Markov properties in presence of measurement noise

David Kleinhans and Rudolf Friedrich
Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany

Matthias Wächter and Joachim Peinke
ForWind Center for Wind Energy Research, Carl-von-Ossietzky University of Oldenburg, D-26111 Oldenburg, Germany

�Received 9 May 2007; published 4 October 2007�

Recently, several powerful tools for the reconstruction of stochastic differential equations from measured
data sets have been proposed �e.g., Siegert et al., Phys. Lett. A 243, 275 �1998�; Hurn et al., J. Time Series
Anal. 24, 45 �2003��. Efficient application of the methods, however, generally requires Markov properties to be
fulfilled. This constraint typically seems to be violated on small scales, which frequently is attributed to
physical effects. On the other hand, measurement noise such as uncorrelated measurement and discretization
errors has large impacts on the statistics of measurements on small scales. We demonstrate that the presence of
measurement noise, likewise, spoils Markov properties of an underlying Markov process. This fact is promis-
ing for the further development of techniques for the reconstruction of stochastic processes from measured
data, since limitations at small scales might stem from artificial noise sources rather than from intrinsic
properties of the dynamics of the underlying process. Measurement noise, however, can be controlled much
better than the intrinsic dynamics of the underlying process.
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I. INTRODUCTION

Physical systems often are described by means of dynami-
cal systems defined by differential equations of first order in
time. The knowledge of a single point in phase space is
sufficient for precise prediction of the future evolution of the
system. Starting from this initial condition, the equations of
motion can be integrated—at least numerically. Some sys-
tems are very sensitive to the initial condition and therefore
are associated with deterministic chaos.

For complex systems, a deterministic description often is
not feasible due to the huge amount of degrees of freedom
and their frequently unknown microscopic interactions.
However, in many cases the individual processes act on two
different time scales. The dynamics of the entire system then
can be reduced to the dynamics of some macroscopic order
parameters, that enslave the highly fluctuating microscopic
degrees of freedom �1�. In turn, the set of order parameters x
obeys stochastic differential equations �SDEs�. If the SDEs
are of first order in time, trajectories likewise can be gener-
ated from one single initial state. The evolution then does not
depend on properties of the trajectory prior to the initial
point and, therefore, exhibits only a very restricted memory.
Realisations of particular trajectories sensitively depend on
the fluctuating random forces, that are involved. However,
considering an ensemble of realizations of the stochastic pro-
cess, the Markovian property becomes evident.

In recent years, the analysis of stochastic time series has
made great advances. Especially, the nonparametric recon-
struction of the governing stochastic differential equation by
means of the direct evaluation so drift and diffusion function
has become a successful tool for analyzing stochastic pro-
cesses. A method that was initially proposed by Siegert et al.
�2�, in the meantime has been applied to several problems in
the field of finance �3�, life sciences �4–10�, and turbulence
�11�. Moreover, algorithms for the efficient application of
maximum likelihood methods have been developed �12,13�.

A brief overview over the estimation power of several meth-
ods can be found in Ref. �14�. Quite recently, an algorithm
has been proposed, that combines the capabilities of the lat-
ter methods �15,16�. However, the validity of Markov prop-
erties remains a crucial constraint for the efficient application
of all these procedures on stationary time series data.

A close inspection of data sets generally indicates, that
Markov properties are violated at small time differences.
Typically, physical arguments are accounted for this effect,
based on the fact that stochastic forces are actually correlated
in time on small time differences. The aim of the present
paper is to study the influence of measurement noise on the
Markov properties of measured data. We shall show that
measurement noise as well interferes with and spoils the
Markov properties.

The paper is organized as follows. In the next section,
some methods for verification of the Markov properties of
measured data sets are reconsidered. Section III contains the
basic arguments concerning the influence of measurement
noise on the transition probability density functions. Conse-
quences of the central equation �6� for the Markov properties
will be made explicit by means of three limiting cases, that
are discussed at the end of the section. In Sec. IV, the general
results of the former section are exemplified by means of two
particular examples. In detail, the impact of discretization
noise on a purely deterministic system and the effects of
uncorrelated measurement noise on a stochastic process are
investigated. We conclude with Sec. V, which summarises
the main results of our investigations and comprises the con-
sequences for standard tools for data analysis.

II. VERIFICATION OF MARKOV PROPERTIES

Multivariate joint probability density functions �PDFs� are
of great importance for the analysis of measured time series
x�t�. In principle, they contain all information on the initial
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data set such as spatial and temporal evolution. The benefit
from a probabilistic approach on the basis of high-
dimensional joint PDFs, however, is generally limited.

The analysis substantially can be simplified, if the data set
under consideration satisfies Markov properties. This cir-
cumstance is equivalent to the representation of all multivari-
ate joint PDFs in products of single-conditioned PDFs,

Pn�xn,xn−1, . . . ,x0� = P2�xn�xn−1� � ¯ � P2�x1�x0�P1�x0� .

�1�

Here, P1�xi� is a shorthand notation for the probability of
being at time ti in a small interval at xi with ti� ti+1∀ i. In
general, the latter transition PDFs furthermore explicitly de-
pend on the times tn , . . . , t0.

Let us now assume the sample to be ergodic and station-
ary in a sense, that ensemble averages can be carried out by
means of time averages and the PDFs do not depend on time
explicitly �17�. Then, the Chapman-Kolmogorov equation
�17,18�

P�xi�xi−2� =� dxi−1P�xi�xi−1�P�xi−1�xi−2� , �2�

has to be fulfilled for any Markov process. This equation can
be evaluated numerically for measured data sets. Although
the validation of this equation is not sufficient for the validity
of Markov properties, it has turned out to be a very robust
criterion.

Moreover, a direct comparison of the conditional prob-
ability distributions P�x2 �x1 ,x0� and P�x2 �x1� has been used
for validation of Markov properties. For Markovian data,

these functions should coincidence for arbitrary values of x0.
An example for the application of this procedure by means
of graphical inspection of the PDFs is depicted in Fig. 1, that
has been prepared by Wächter et al. in connection with the
study of the statistical properties of hight profiles of gold
surfaces �10�. Here, Wächter et al. investigated Markov
properties of the transition PDFs for nested heigth incre-
ments in different scales. In the present case, Markov prop-
erties might be fulfilled for scales separated by �r=35 nm,
whereas they evidently are violated at separation lenghts of
�r=14 nm, as can be seen from inspection of Fig. 1. It is
evident that the proper interpretation of the plot with respect
to the Markov properties has to be quantified by introducing
a certain measure for the distance of the two probability dis-
tributions. To this end the Wilcoxon test �19,20� can be ap-
plied in order to compare PDFs, that originate from samples
of different size, and only makes few demands on the prop-
erties of the individual PDFs. The numerical implementation
is straightforward, results for the present example, e.g., are
depicted in Ref. �10�. For a detailed description of the Wil-
coxon test we refer to the appendix of Ref. �21�.

If the direct estimation �2� of drift and diffusion functions
from measured data sets is intended and the underlying pro-
cess, therefore, is assumed to obey Langevin equations, an
alternative method can be applied for inspection of Markov
properties. Once the estimation procedure has been per-
formed and an estimate for drift and diffusion functions is
available, the character of the dynamical noise can be deter-
mined from the sample. The presence of noise without any
temporal and spatial correlations is a sufficient indication for
compliance of the measured data set with Markov properties.
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FIG. 1. Example for the analysis of Markov properties by means of graphical inspection of transition PDFs, prepared by Wächter et al.
�10�. Test for Markov properties of Au film data for two different scale separations �r=14 nm �left-hand side� and 35 nm �right-hand side�,
where �r=r3−r2=r2−r1. In both cases r2=169 nm. In each case a contour plot of conditional probabilities P�h1 ,r1 �h2 ,r2� �dashed lines� and
P�h1 ,r1 �h2 ,r2 ;h3=0,r3� �solid lines� is shown in the top panel. Contour levels differ by a factor of 10, with an additional level at p=0.3.
Below the top panels in each case, two one-dimensional cuts at h2� ±�� are shown with P�h1 ,r1 �h2 ,r2� as dashed lines and
P�h1 ,r1 �h2 ,r2 ;h3=0,r3� as circles. From the deviations of the PDFs for �r=14 nm �left-hand side� it becomes evident, that Markov
properties are not fulfilled in this case. They might, however, be valid for �r=35 nm �right-hand side�.
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This procedure, e.g., is outlined and applied in Ref. �22�.
It is certainly the most direct way to investigate Markov
properties.

III. IMPACT OF MEASUREMENT NOISE
ON MARKOV PROPERTIES

An ensemble of Markov processes x�t� is considered, that
now is distorted by measurement noise ��t�. For simplicity,
the details are carried out for a one-dimensional process.
Only three consecutive points x0, x1, and x2 with xiªx�ti�
and tiª t0+ i� are investigated for this purpose. Since the
statistics is assumed to be stationary, this is sufficient for the
current considerations. Henceforth, Px�xi+1 �xi� is a shorthand

notation for the transition PDF of the variable x in the time
increment �.

Let us now assume that the true process is hidden to the
data analyst: Instead of the variable x�t�, a perturbed variable
y�t� is measured that emerges from the initial process by
means of the relation

y�t� = x�t� + ��x�t�,t� . �3�

Thereby, ��x�t� , t� is a stochastic variable, that incorporates
systematic and nonsystematic measurement errors. We fur-
ther assume that the deterministic contributions to the mea-
surement error can be identified and the noise � can be speci-
fied by

��x�t�,t� = �S�x�t� + �NS�t�� . �4�

Here, �NS incorporates nonsystematic noise sources. For rea-
sons of simplicity, we assume these errors to be independent
of one another for consecutive measurements

��NS�t + ���NS�t�	 
 ���� . �5�

On the other hand, �S characterises deterministic, systematic
measurements errors, that have no explicit dependence on t.
We would like to emphasize that discretization errors fall
into this broad class, that are an intrinsic feature of any digi-
tal measurement procedure. While the former noise is uncor-
related, this assumption generally is violated for the latter
noise source due to correlations in the variable x itself.

The probability for the measurement of yi now solely de-
pends on the entangled variable xi and can be specified by
means of the conditional probability P��yi �xi�. Hence, the
conditional probability Py�y2 �y1 ,y0� for the process y�t� can
be calculated by means of its definition through joint prob-
abilities. Application of the Markov properties of the under-
lying process x�t� finally yields

Py�y2�y1,y0� =
Py�y2,y1,y0�

Py�y1,y0�
=
� dx2� dx1� dx0P��y2�x2�P��y1�x1�P��y0�x0�Px�x2�x1�Px�x1�x0�Px�x0�

� dx1� dx0P��y1�x1�P��y0�x0�Px�x1�x0�Px�x0�
. �6�

In general, this expression deviates from the single condi-
tioned PDF Py�y2 �y1�. Therefore, noisy measurements on
perfect Markov processes in general lose their Markov prop-
erty due to the inexact measurement procedure.

Referring to Sec. I this means that a single point from a
noisy measurement on a Markov process, y�tn�, not in any
case is sufficient for a proper prediction of the future dynam-
ics of the measured data. This makes sense, since the intrin-
sic state of the system x�tn� can hardly be estimated from just
one single measurement due to the measurement uncertainty.
Rather, the consideration of a couple of noisy measurements

y�t0� , . . . ,y�tn�, can enhance the accuracy of the predicted
probability of y�tn+1�.

At least for three simple cases, expression �6� can be in-
vestigated analytically. First, Markov properties are retrieved
for the trivial case P��y �x�=��y−x�, where no measurement
noise is actually present.

Second, Eq. �6� can be evaluated for Px�xi+1 �xi�
= Px�xi+1�. In this case, the entangled process itself does not
show any correlations. Frequently, this approximately is true
for large time increments between individual measurements.
If so, the integrals disentangle and the noisy measurements
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FIG. 2. Example of a process x�t� according to Eq. �8�, that is
affected by strong discretization noise. Here, the faint line specifies
the original process x�t�, whereas the bold line depicts the evolution
y�t�, that eventually is obtained from the measurement due to dis-
cretization errors.
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themselves turn out to be independent of one another
Py�y2 �y1 ,y0�= Py�y2�. Thus, the measured variable y satisfies
Markov properties.

Third, noisy measurements can be considered that sample
the process much faster than the intrinsic dynamics of the

entangled variable x. Therefore, Px�x2 �x1�=��x2−x1� is a rea-
sonable approximation of the transition PDF on consecutive
measurements. Moreover, only purely nonsystematic Gauss-
ian measurement noise with variance �2 is taken into ac-
count. In this case, evaluation of expression �6� yields

Py�y2�y1,y0� =� 1

3	�2 exp�−
�2y2 − y1 − y0�2

12�2 � dx0� 1

2	�2/3
exp�−

�x0 −
1

3
�y2 + y1 + y0�2

2�2/3
�Px�x0�

� dx0� 1

2	�2/2
exp�−

�x0 −
1

2
�y1 + y0�2

2�2/2
�Px�x0�

. �7�

In the latter factor, two different convolutions occur in nu-
merator and denominator: The stationary PDF Px�x0� is con-
voluted with Gaussian PDFs with different standard devia-
tions, centered at average values of y2 ,y1 ,y0, and y1 ,y0,
respectively. Therefore, this expression generally depends on
the value y0 and conflicts with Markov properties of y�t�. We
would like to emphasize that the approximation of a persis-
tent entangled process is feasible for fast but noisy measure-
ments on rather slow processes. The current case reveals the
loss of Markov properties on the very small time scales for
these kind of measurements, that does not stem from its in-
trinsic dynamics but, purely, from uncertainties during the
measurement process.

IV. EXAMPLES

Let us now elucidate the findings of the latter section by
means of two examples. First, the influence of discretization
noise on the properties of a simple deterministic process is
investigated. By construction, the violation of the Chapman-
Kolmogorov equation can be demonstrated.

Second, the influence of Gaussian measurement noise on
the Markov properties of a stochastic process at relatively
high time lag is considered. The effect of measurement noise
becomes obvious from the inspection of conditional PDFs
obtained by numerical integration of the Chapman-
Kolmogorov equation �2�.

A. Influence of discretization noise on a deterministic process

We consider the elementary process

x�t0 + �� = x�t0�exp�− 
�� . �8�

It is the general solution of the ordinary differential equation
ẋ=−
x. Since the dynamics are of first order in time, the
one-dimensional process x�t� can be specified by one initial
condition and, therefore, is Markovian. Due to the determin-
istic character, the conditional transition PDF for the variable
x in the time interval � complies with

Px�x1�x0,�� = ��x1 − x0e−
�� . �9�

The process apparently is not stationary, since no forcing is
present. The conditional transition PDFs, however, do not
depend on time explicitly. We now consider the statistics of
an ensemble of measurements, whose initial positions x�t0�
of the individual processes are distributed according to Px�x�.

We assume that the exact intrinsic variable x is entangled
due to discretization errors, that occur during an imaginary
measurement procedure. Therefore, the exact continuous
variables x are mapped to a finite set of discrete variables
�= ��0 , . . . ,�n� according to the rule

x → y = �i such that �i
−  x � �i

+. �10�

Here, the intervals ��i
− ,�i

+� and ��i+1
− ,�i+1

+ � associated with
the variables �i and �i+1 are connected to one another by the
requirements �i

+=�i+1
− and �i

−��i
+. Moreover, it is implied

that any measured value x can be mapped by means of Eq.
�10�. The interval ��0

− ,�n
+�, thus, covers all values x�t� that

are realised by any process under consideration at any time t.
The discretization noise can be specified in compliance with
the notation of the latter section by the conditional PDF

P��y�x� = �1 if x � �y−, � y+� ,

0 if x � �y−, � y+� .
� �11�

The effect of discretization noise on the initial variable x is
illustrated in Fig. 2. As y only assumes discrete values
�0 , . . . ,�n, the normalization of the latter PDF for any x is
guaranteed by the equation

�
y��

P��yi�x� = 1. �12�

We now would like to demonstrate the loss of Markov
properties due to the discretization of the signal. In principle,
Eq. �6� directly could be evaluated numerically for the en-
semble under consideration. However, in this case the inval-
idity of the Chapman-Kolmogorov equation �2� can be uti-
lized for this purpose.
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Analogous to Eq. �6�, the transition PDF conditioned on a
single point can be specified,

Py�y1�y0,��

=
� dx1� dx0P��y1�x1�P��y0�x0�Px�x1�x0,��Px�x0�

� dx0P��y0�x0,��Px�x0�
.

�13�

Application of the particular transition PDFs �9� and �11�
yields

Py�y1�y0,�� =

�
max�y0

−,e
�y1
−�

min�y0
+,e
�y1

+�
dx0Px�x0�

�
y0

−

y0
+

dx0Px�x0�
. �14�

If the process y�t� would obey Markov properties, the dis-
crete version of the Chapman-Kolmogorov equation

Py�y2�y0,2�� = �
y1��

Py�y2�y1,��Py�y1�y0,�� , �15�

would have to be fulfilled for any choice of y2, y0, and �. For
y2=y0=y with y−�0 and �=ln�y+ /y−� / �2
�, the invalidity of
this equation is evident, if Px�x��0 for x� �y− ,y+�: The left-
hand side of Eq. �15� vanishes, whereas the sum on the right-
hand side involves the summand

��eln�y+/y−�/2y−

y+

dx0Px�x0�

�
y−

y+

dx0Px�x0� �
2

� 0. �16�

As the other summands are non-negative, the Chapman-
Kolmogorov equation is violated for the process under con-
sideration. Consequently, the distorted process y�t� does not
comply with Markov properties any more.

B. Influence of measurement noise on a stochastic process

The influence of Gaussian measurement noise on a one-
dimensional stochastic process with drift and diffusion func-
tions

D�1��x� = x�D − 
 ln� x

x0
� , �17a�

D�2��x� = Dx2 �17b�

is investigated. For further details on stochastic processes we
refer to Refs. �17,18�. This process has already been dis-
cussed in Ref. �16� within the scope of an analytical ex-
ample. Thereby, the following procedure for the exact simu-
lation of a discrete sample of this process by means of the
underlying Ornstein-Uhlenbeck process s�t� has been moti-
vated,

xi = exp�si� , �18a�

si+1 = e−
�tsi +�D



�1 − e−2
���i. �18b�

Here, Eq. �18b� is the rule for the discrete simulation of an
underlying Ornstein-Uhlenbeck process s, where �i are nor-
mally distributed independent random variables with vari-
ance 1. It is deduced from the transition PDFs for the
Ornstein-Uhlenbeck process, that can be exactly specified
even for finite time lag � �18�. In this vein, discretization
errors stemming from the standard schemes for the numerical
integration of SDEs �23� are avoided. The starting value s0
should be drawn from a Gaussian distribution with variance
D /
, which is the stationary distribution of the process s.
The desired process x is obtained from the process s by
means of the nonlinear transform �18a�. A sample process for
parameter set �
 ,D�= �0.75,0.1� is depicted in Fig. 3.

For the current example, time series A consisting of 50
�106 sample points with time increment �=0.05 was simu-
lated. A second series B was generated from series A by
addition of independent, identically distributed Gaussian ran-
dom variables with variance 2.25�10−2, that model noise
stemming from nonsystematic measurement errors. Both se-
ries A and B have been subjected to the same analyzing
procedure: Conditional PDFs have been calculated from the
for time increment �=0.1. On the other hand, these condi-
tional PDFs have been calculated from conditional PDFs for
the time lag �=0.05 by means of numerical integration of the
Chapman-Kolmogorov equation �2�. The results are exhib-
ited in Fig. 4. In theory, these PDFs should coincidence with
the former ones for Markovian processes. However, distinc-
tive systematic deviations show up in the presence of mea-
surement noise, as can be seen from the analysis of data set
B in Fig. 4. Hence, the artificial measurement noise of time
series B interferes with the Markov properties of the under-
lying time series A.

The sets A and B correspond to the first and third limiting
case of Eq. �6�, respectively, that were discussed at the end of
Sec. III. The second case also can be investigated by means
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FIG. 3. Detail of a sample path of the stochastic process �17� for
the parameters �
 ,D�= �0.75,0.1�. The occurrence of distinct peaks
is characteristic for multiplicative stochastic processes.
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of the current example with an increased time lag �, such that
exp�−
���1. Then, Markov properties are reobtained even
in the case of strong measurement noise.

V. CONCLUSION

The influence of different noise sources on the structure of
multivariate joint probability distribution functions has been
investigated. In particular, the effects of noise on the sensi-
tivity of transition probability density functions to an addi-
tional, second condition has been analyzed. It turned out that
noise generally has impacts on these transition probability
density functions and seriously interferes with Markov prop-
erties, even if they are fulfilled for the original, uncorrupted
process. This fact is, in our opinion, counterintuitive.

The analysis of samples, that are affected by measurement
noise, already for a long time is routine in applied sciences
and industrial applications. Typically, Kalman filtering is ap-
plied for this purpose �24�. For a recent review on this and
other iterative techniques we refer to Ref. �25�. Recently,
Siefert et al. �26� addressed this problem from a dynamical
systems’ point of view. The intention was to extend the effi-
cient nonparametric estimation procedure proposed by Sieg-

ert et al. �2� to data suffering from measurement noise. In
this context it could be shown that intrinsic dynamical and
external measurement noise, in principle, can be separated
from one another, if the sampling frequency is sufficiently
high whereas the amplitude of the measurement noise is
weak. Following, Böttcher et al. succeeded in the efficient
reconstruction of simple processes even in presence of strong
measurement noise �27�. Although the latter work is based
on Eq. �13�, the general problem of the vanishing Markov
properties in presence of measurement noise could not be
identified. This new point of view, however, involves a broad
class of tools that are available for data analysis, since most
tools rely on a finite embedding of the data.

The new insights have consequences for future analysis of
time series: The influence of measurement noise should be
discussed for any individual method, that is, applied for the
analysis of time series. Explicitly, also effects stemming
from discretization errors should be considered here. Even-
tually, methods might be applicable even to data sets, that
until now could not be processed due to invalidity of Markov
properties. This feature, however, might stem from artificial
noise rather than from intrinsic properties of the dynamics of
the underlying process.
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FIG. 4. Test for Markov properties for simulated samples A without measurement noise �LHS� and B with artificial Gaussian measure-
ment noise with variance 2.25�10−2 �RHS�, respectively. In the upper panels, the conditional transition PDFs for �=0.1 �solid contour lines�
are compared with the ones obtained for the same time increment by numerical integration of the Chapman-Kolmogorov equation �2� for
transition PDFs for increment � /2 �dashed contour lines�. Contour lines are placed at the levels 10, 1, 0.1, and 0.01. In the lower panels, a
cross section of the transition PDF at x�t�=1 is depicted. For reasons of clearness, circles have been added to the dashed lines corresponding
to the data set B. Perfect coincidence of the PDFs is observed for A, whereas in case of B systematic deviations become evident.
Consequently, Markov properties are spoiled by the artificial measurement noise of sample B.
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